超声波测距

罗大富 BigRich大约 5 分钟ESP32Python

本节课来学习使用 MicroPython 控制超声波传感器。

实验原理

超声波是一种频率高于 20000Hz 的声波,超声波的方向性好,反射能力强,易于获得较集中的声能,在水中传播距离比空气中远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。

超声波用于许多不同的领域。超声波设备用于检测物体和测量距离。超声成像或超声检查常用于医学。在产品和结构的无损检测中,超声波用于检测不可见的缺陷。在工业上,超声波用于清洁、混合和加速化学过程。蝙蝠和鼠海豚等动物使用超声波来定位猎物和障碍物。

超声波传感器使用声纳来确定与物体的距离。我们使用的超声波模块由 2 个超声波探头组成:

  1. T:表示 Transmitter(发射),负责发送超声波信号;
  2. R:表示 Receiver(接收),负责接收回响信号;

注意

如果在使用过程中,对其中任意一个探头进行遮挡,都会使超声波无法正常测量距离。

底部有四个引脚:

  1. VCC:5V 供电引脚;
  2. GND:接地;
  3. TRIG:控制信号输入;
  4. ECHO:回响信号输出;

以上时序图表示超声波模块的基本工作原理:

  • 采用 IO 口 TRIG 触发测距,给一个 10us 的高电平信号;
  • 模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;
  • 有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2

回响信号的脉冲宽度与所测的距离成正比。由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。公式如下:

距离 = 高电平时间 * 声速(340m/s)/2

硬件电路设计

物料清单(BOM 表):

材料名称数量
0.96 寸 OLED 屏幕1
杜邦线(跳线)若干
面包板1
超声波模块1

软件程序设计

该程序的功能是通过超声波模块测算距离并显示在 OLED 屏幕上,代码如下:

from machine import Pin,SoftI2C,Timer
from libs.HCSR04 import HCSR04     #子文件夹下的调用方式
from libs.ssd1306 import SSD1306_I2C

#初始化OLED
i2c = SoftI2C(sda=Pin(7), scl=Pin(15))
oled = SSD1306_I2C(128, 64, i2c, addr=0x3c)

#初始化接口 trig=45,echo=0
trig = Pin(45,Pin.OUT)
echo = Pin(0,Pin.IN)
HC=HCSR04(trig,echo)

#中断回调函数
def fun(tim):

    oled.fill(0)  # 清屏,背景黑色
    oled.text('XYD', 0, 0)
    oled.text('Distance test:', 0, 15)

    Distance = HC.getDistance() #测量距离

    # OLED显示距离
    oled.text(str(Distance) + ' CM', 0, 35)

    oled.show()

    #串口打印
    print(str(Distance)+' CM')

#开启RTOS定时器
tim = Timer(1)
tim.init(period=1000, mode=Timer.PERIODIC, callback=fun) #周期1s

HCSR04.py 驱动文件上传到 ESP32 中的 libs 目录下:其中 HCSR04.py 代码如下:

"""libs/HCSR04.py"""
from time import sleep_us,ticks_us,sleep

class HCSR04():
    def __init__(self,trig,echo):
        self.trig=trig
        self.echo=echo

    def getDistance(self):
        distance=0
        self.trig.value(1)
        sleep_us(20)
        self.trig.value(0)
        while self.echo.value() == 0:
            pass
        if self.echo.value() == 1:
            ts=ticks_us()                   #开始时间
            while self.echo.value() == 1:   #等待脉冲高电平结束
                pass
            te=ticks_us()                   #结束时间
            tc=te-ts                        #回响时间(单位us,1us=1*10^(-6)s)
            distance=(tc*170)/10000         #距离计算 (单位为:cm)
        return distance

SSD1306.pySPI 驱动 OLED 液晶屏幕 中的代码一致,将 ssd1306.py 驱动文件上传到 ESP32 中的 libs 目录下:

# MicroPython SSD1306 OLED driver, I2C and SPI interfaces Modified by Bigrich-Luo
 
import time
import framebuf
 
# register definitions
SET_CONTRAST        = const(0x81)
SET_ENTIRE_ON       = const(0xa4)
SET_NORM_INV        = const(0xa6)
SET_DISP            = const(0xae)
SET_MEM_ADDR        = const(0x20)
SET_COL_ADDR        = const(0x21)
SET_PAGE_ADDR       = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP       = const(0xa0)
SET_MUX_RATIO       = const(0xa8)
SET_COM_OUT_DIR     = const(0xc0)
SET_DISP_OFFSET     = const(0xd3)
SET_COM_PIN_CFG     = const(0xda)
SET_DISP_CLK_DIV    = const(0xd5)
SET_PRECHARGE       = const(0xd9)
SET_VCOM_DESEL      = const(0xdb)
SET_CHARGE_PUMP     = const(0x8d)
 
  
class SSD1306:
    def __init__(self, width, height, external_vcc):
        self.width = width
        self.height = height
        self.external_vcc = external_vcc
        self.pages = self.height // 8
        # Note the subclass must initialize self.framebuf to a framebuffer.
        # This is necessary because the underlying data buffer is different
        # between I2C and SPI implementations (I2C needs an extra byte).
        self.poweron()
        self.init_display()
 
    def init_display(self):
        for cmd in (
            SET_DISP | 0x00, # off
            # address setting
            SET_MEM_ADDR, 0x00, # horizontal
            # resolution and layout
            SET_DISP_START_LINE | 0x00,
            SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
            SET_MUX_RATIO, self.height - 1,
            SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
            SET_DISP_OFFSET, 0x00,
            SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
            # timing and driving scheme
            SET_DISP_CLK_DIV, 0x80,
            SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
            SET_VCOM_DESEL, 0x30, # 0.83*Vcc
            # display
            SET_CONTRAST, 0xff, # maximum
            SET_ENTIRE_ON, # output follows RAM contents
            SET_NORM_INV, # not inverted
            # charge pump
            SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
            SET_DISP | 0x01): # on
            self.write_cmd(cmd)
        self.fill(0)
        self.show()
 
    def poweroff(self):
        self.write_cmd(SET_DISP | 0x00)
 
    def contrast(self, contrast):
        self.write_cmd(SET_CONTRAST)
        self.write_cmd(contrast)
 
    def invert(self, invert):
        self.write_cmd(SET_NORM_INV | (invert & 1))
 
    def show(self):
        x0 = 0
        x1 = self.width - 1
        if self.width == 64:
            # displays with width of 64 pixels are shifted by 32
            x0 += 32
            x1 += 32
        self.write_cmd(SET_COL_ADDR)
        self.write_cmd(x0)
        self.write_cmd(x1)
        self.write_cmd(SET_PAGE_ADDR)
        self.write_cmd(0)
        self.write_cmd(self.pages - 1)
        self.write_framebuf()
 
    def fill(self, col):
        self.framebuf.fill(col)
 
    def pixel(self, x, y, col):
        self.framebuf.pixel(x, y, col)
 
    def scroll(self, dx, dy):
        self.framebuf.scroll(dx, dy)
 
    def text(self, string, x, y, col=1):
        self.framebuf.text(string, x, y, col)
 
 
class SSD1306_I2C(SSD1306):
    def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
        self.i2c = i2c
        self.addr = addr
        self.temp = bytearray(2)
        # Add an extra byte to the data buffer to hold an I2C data/command byte
        # to use hardware-compatible I2C transactions.  A memoryview of the
        # buffer is used to mask this byte from the framebuffer operations
        # (without a major memory hit as memoryview doesn't copy to a separate
        # buffer).
        self.buffer = bytearray(((height // 8) * width) + 1)
        self.buffer[0] = 0x40  # Set first byte of data buffer to Co=0, D/C=1
        self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
        super().__init__(width, height, external_vcc)
 
    def write_cmd(self, cmd):
        self.temp[0] = 0x80 # Co=1, D/C#=0
        self.temp[1] = cmd
        self.i2c.writeto(self.addr, self.temp)
 
    def write_framebuf(self):
        # Blast out the frame buffer using a single I2C transaction to support
        # hardware I2C interfaces.
        self.i2c.writeto(self.addr, self.buffer)
 
    def poweron(self):
        pass
 
 
class SSD1306_SPI(SSD1306):
    def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
        self.rate = 10 * 1024 * 1024
        dc.init(dc.OUT, value=0)
        res.init(res.OUT, value=0)
        cs.init(cs.OUT, value=1)
        self.spi = spi
        self.dc = dc
        self.res = res
        self.cs = cs
        self.buffer = bytearray((height // 8) * width)
        self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
        super().__init__(width, height, external_vcc)
 
    def write_cmd(self, cmd):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs.on()
        self.dc.off()
        self.cs.off()
        self.spi.write(bytearray([cmd]))
        self.cs.on()
 
    def write_framebuf(self):
        self.spi.init(baudrate=self.rate, polarity=0, phase=0)
        self.cs.on()
        self.dc.on()
        self.cs.off()
        self.spi.write(self.buffer)
        self.cs.on()
 
    def poweron(self):
        self.res.on()
        time.sleep_ms(1)
        self.res.off()
        time.sleep_ms(10)
        self.res.on()
上次编辑于:
贡献者: Luo